A multi-period capacitated school location problem with modular equipments and age restrictions

Eric Delmelle and Jean-Claude Thill
Dominique Peeters and Isabelle Thomas

University of North Carolina, Charlotte, U.S.A.
Center for Operations Research and Econometrics (CORE), Belgium

October 14 2011
1. **Rapidly expanding urban areas are dynamic environments**
 - Need to expand existing network of public facilities to meet anticipated increase or decrease in demand
 - schools, libraries, emergency services

2. **Closing existing facilities in areas characterized by population decline**
 - Decision making process \rightarrow political decisions (bad press)
Motivation

1. Rapidly expanding urban areas are dynamic environments
 - Need to expand existing network of public facilities to meet anticipated increase or decrease in demand
 - schools, libraries, emergency services

2. Closing existing facilities in areas characterized by population decline
 - Decision making process → political decisions (bad press)
Motivation

1. Rapidly expanding urban areas are dynamic environments
 - Need to expand existing network of public facilities to meet anticipated increase or decrease in demand
 - schools, libraries, emergency services

2. Closing existing facilities in areas characterized by population decline
 - Decision making process → political decisions (bad press)
Waddell students protest decision to close school

by ANN DOSS HELMS & MARK PRICE/Charlotte Observer

CHARLOTTE, N.C. -- Hundreds of students at E.E. Waddell High School held hands and stood outside the school Wednesday morning, refusing to go inside as a silent protest to Charlotte-Mecklenburg Schools’ decision to close the school.

In a Tuesday night meeting marked by split votes, angry protests and accusations of racism, the Charlotte-Mecklenburg school board approved a sweeping plan to close 10 schools and make other dramatic changes.
Motivation

1. **Location models** → tools for regional and urban planners and decision makers
 - Focus is on multi-period school locations
 - Explicit temporal component
 - Each student must be assigned to a school
 - Budget determines number of schools (p-median)
 - Limited capacities

2. **Dynamic problems** for different time periods
 - Ability to handle school closure and addition to existing network

(Roodman and Schawrtz 1975)
Motivation

1 **Location models** → tools for regional and urban planners and decision makers

 - Focus is on multi-period school locations
 - Explicit temporal component
 - Each student must be assigned to a school
 - Budget determines number of schools (p-median)
 - Limited capacities

2 **Dynamic problems** for different time periods

 - Ability to handle school closure and addition to existing network
 (Roodman and Schawrtz 1975)
Motivation

1. **Location models** → tools for regional and urban planners and decision makers
 - Focus is on multi-period school locations
 - Explicit temporal component
 - Each student must be assigned to a school
 - Budget determines number of schools (p-median)
 - Limited capacities

2. **Dynamic problems** for different time periods
 - Ability to handle school closure and addition to existing network
 (Roodman and Schwartz 1975)
Motivation

1. **Location models** → tools for regional and urban planners and decision makers
 - Focus is on multi-period school locations
 - Explicit temporal component
 - Each student must be assigned to a school
 - Budget determines number of schools (p-median)
 - Limited capacities

2. **Dynamic problems** for different time periods
 - Ability to handle school closure and addition to existing network
 (Roodman and Schawrtz 1975)
Existing objectives in the literature

- General objectives in public facility location models:
 1. Minimize total travel distance to the facility j (Hakimi 1964)
 2. Minimizing necessary infrastructure while keeping a certain level of coverage (Toregas et al. 1971)
 3. Each individual i is assigned to its closest facility j, or
 4. Facility j is located within a suitable distance d_{max}^i from i
 5. Models should address capacity constraints (CFLP)
Existing objectives in the literature

- General objectives in public facility location models:
 1. Minimize total travel distance to the facility j (Hakimi 1964)
 2. Minimizing necessary infrastructure while keeping a certain level of coverage (Toregas et al. 1971)
 - Each individual i is assigned to its closest facility j, or
 - Facility j is located within a suitable distance d_{i}^{max} from i
 3. Models should address capacity constraints (CFLP)
Existing objectives in the literature

- General objectives in public facility location models:
 1. minimize total travel distance to the facility j (Hakimi 1964)
 2. minimizing necessary infrastructure while keeping a certain level of coverage (Toregas et al. 1971)

 - Each individual i is assigned to its closest facility j, or
 - Facility j is located within a suitable distance d_{i}^{max} from i

 3. Models should address capacity constraints (CFLP)

Existing objectives in the literature

- General objectives in public facility location models:
 1. Minimize total travel distance to the facility j (Hakimi 1964)
 2. Minimizing necessary infrastructure while keeping a certain level of coverage (Toregas et al. 1971)

- Each individual i is assigned to its closest facility j, or
- Facility j is located within a suitable distance d_{i}^{max} from i

3. Models should address capacity constraints (CFLP)
Existing objectives in the literature

1. **Dynamic models** have received a lot of attention:
 - Drezner (1995b) suggests a progressive p-median (no relocation of facilities).

2. Significant body of literature in the school location
 - Handling opening of new facilities, expansion, reduction.
 - Age of facility, number of time periods.
 - Uncertainty during time periods.
 - Distance penalty beyond threshold.
 - Different growth scenarios.
Dynamic models have received a lot of attention:

- Drezner (1995b) suggests a progressive p-median (no relocation of facilities).

Significant body of literature in the school location:

 - Handling opening of new facilities, expansion, reduction.
 - Age of facility, number of time periods.
 - Uncertainty during time periods.
 - Distance penalty beyond threshold.
 - Different growth scenarios.
Research Objectives

• **Dynamic facility** problem should address changes in population counts.

 1. number of open facilities p is increased or decreased at each time period or is controlled by cost function.

 2. Each facility has a pair of **minimum** and **maximum** capacity constraints.

 • Maximal capacity can be increased with addition of **modular** equipments.

 3. Closure, expansion and reduction and **age of school** are controlled.
Dynamic facility problem should address changes in population counts.

1. The number of open facilities p is increased or decreased at each time period or is controlled by cost function.

2. Each facility has a pair of minimum and maximum capacity constraints.
 - Maximal capacity can be increased with addition of modular equipments.

3. Closure, expansion and reduction and age of school are controlled.
Research Objectives

- **Dynamic facility** problem should address changes in population counts.

 1. number of open facilities p is increased or decreased at each time period or is controlled by cost function.
 2. Each facility has a pair of **minimum** and **maximum** capacity constraints.
 - Maximal capacity can be increased with addition of **modular** equipments.
 3. Closure, expansion and reduction and **age of school** are controlled.
• **Dynamic facility** problem should address changes in population counts.

1. number of open facilities p is increased or decreased at each time period or is controlled by cost function.
2. Each facility has a pair of **minimum** and **maximum** capacity constraints.
 - Maximal capacity can be increased with addition of **modular** equipments.
3. Closure, expansion and reduction and **age of school** are controlled.
Formulation

Notation: indices, sets and parameters

Indices and sets:

- \(i, I \): index and set of demand areas (aggregated population)
- \(j, J \): index and set of candidate locations (school)
- \(m, M \): index and set of time period (or window)
- \(J^N \): set of new candidate locations, \(J^N \subset J \), and \(J^E \) the set of existing facilities, \(J^E \subset J \)

Travel costs:

- \(t_{ijm} \): travel time between an individual \(i \) and facility \(j \) at time period \(m \).
- \(t_{im}^{\text{max}} \): maximum travel time an individual is willing to travel
- \(t_{im}^{\text{max}} > \min_{j \in J} t_{ijm} \).
- \(c_{ijm} \): cost to travel from \(i \) to \(j \) at time \(m \);

\[
c_{ijm} = \begin{cases}
\alpha t_{ijm} & \text{if } t_{ijm} \leq t_{im}^{\text{max}} \\
\alpha t_{im}^{\text{max}} + (t_{ijm} - t_{im}^{\text{max}})^\beta & \text{if } t_{ijm} > t_{im}^{\text{max}}
\end{cases}
\]

Facility costs:

- \(c^{++} \): leasing cost of a (mobile) class unit/trailer
- \(c_{fjm} \): cost of operating a school \(j \) at time \(m \)
- \(c_{sm} \): marginal cost per student at time \(m \).
- \(c_{Njm} \): cost to open a new school \(j \) at time \(m \): set-up or construction cost.
- \(c_{Ejm} \): cost to close an existing school \(j \) at time \(m \).

Capacities and additional parameters:

- \(z_{jm}^+ \): max. capacity for facility \(j \) at time \(m \).
- \(K_{jm} \): max. number of additional units at \(j \) at time \(m \).
- \(z^{++} \): capacity of a soft unit (e.g. 30 students).
- \(a_{im} \): demand at location \(i \) at time \(m \)
- \(e_{jm} \): age of existing facility \(j \) at time \(m \)
- \(E \): minimal age for a facility to close
- \(w_m \): weight reflecting importance of time period.
- \(\gamma_{1,2} \): importance given to travel and school operating costs, respectively.
Maximal traveled distance d_{im}^{max} or t_{im}^{max}

t_{ijm}: travel time between an individual i and facility j at time period m.

t_{im}^{max}: maximum travel time an individual is willing to travel $t_{im}^{max} > \min_{j \in J} t_{ijm}$.

$N_{im} = \{ j \in J | t_{ijm} \leq t_{im}^{max} \}$: Set of facilities within acceptable travel time (i).

c_{ijm}: cost to travel from i to j at time m; $c_{ijm} = \begin{cases} \alpha t_{ijm} & \text{if } t_{ijm} \leq t_{im}^{max} \\ \alpha t_{im}^{max} + (t_{ijm} - t_{im}^{max}) \beta & \text{if } t_{ijm} > t_{im}^{max} \end{cases}$

An individual i at time $m = 1$ can choose among different facilities. Once assigned to a facility beyond a travel distance d_{i}^{max}, the impedance increases exponentially with rate β.
Notation: decision variables

\[X_{ijm} = \begin{cases}
1 & \text{if demand } i \text{ is assigned to } j \text{ at time } m \\
0 & \text{otherwise}
\end{cases} \]

\[Y_{jm} = \begin{cases}
1 & \text{if location } j \text{ is opened at time } m \\
0 & \text{otherwise}
\end{cases} \]

\[B_{jm} = \text{modular units necessary at } j \text{ at time } m \]
Formulation: objective function

Minimize \(F = (\gamma_1 \cdot F_1) + (\gamma_2 \cdot F_2) \)

\[F_1 = \left[\sum_{i \in I} \sum_{m \in M} \left(\sum_{j \in J} w_m \cdot c_{ijm} \cdot a_{im} \cdot X_{ijm} \right) \right] \]

- transportation costs

\[F_2 = \left[\left(\sum_{j \in J} \sum_{m \in M} c_{fjm} \cdot Y_{jm} \right) + \left(\sum_{j \in J^N} \sum_{m \in M \setminus \{1\}} c_{Nm} \cdot (Y_{jm} - Y_{j,m-1}) \right) + \right. \]

- fixed costs

- opening cost

\[\left(\sum_{j \in J^E} \sum_{m \in M \setminus \{1\}} c_{Ejm} \cdot (Y_{j,m-1} - Y_{jm}) \right) + \left(\sum_{i \in I} \sum_{j \in J} \sum_{m \in M} c_{sm} \cdot a_{im} \cdot X_{ijm} \right) + \]

- closing cost

- student cost

\[\left(\sum_{j \in J} \sum_{m \in M} c_{m}^{++} \cdot B_{jm} \right) \]

- leasing cost
Assignment, capacity, age, closing constraints

\[\sum_{j \in J} X_{ijm} = 1 \quad \forall i \in I, \forall m \in M \]

\[X_{ijm} \leq Y_{jm} \quad \forall i \in I, \forall m \in M, \forall j \in J \]

\[\sum_{i \in I} a_{im} \cdot X_{ijm} \leq (e_{jm}^+ \cdot Y_{jm}) + (N_{jm} \cdot z^{++}) \quad \forall j \in J, \forall m \in M \setminus \{1\} \]

\[B_{jm} \leq A \cdot Y_{jm} \quad \forall j \in J, \forall m \in M \setminus \{1\} \]

\[B_{jm} \leq K_{jm} \quad \forall j \in J, \forall m \in M \setminus \{1\} \]

\[\bar{E} - e_{jm}^E \leq A \cdot Y_{jm} \quad \forall j \in J^E, \forall m \in M \setminus \{1\} \]

\[Y_{j,m-1} \leq Y_{jm} \quad \forall j \in J^N, \forall m \in M \setminus \{1\} \]

\[Y_{jm} \leq Y_{j,m-1} \quad \forall j \in J^E, \forall m \in M \setminus \{1\} \]

\[X_{ijm}, Y_{jm} \in 0, 1 \quad \forall i \in I, \forall j \in J, \forall m \in M \]

\[B_{jm} \in Z^+ \quad \forall j \in J, \forall m \in M \setminus \{1\} \]
GIS

Linking GIS to solvers

Generates locations of:
- demand nodes
- facilities
- city centers

Computes:
- distances

Visualization:
- capacities
- assignments (spiders)

ArcGIS

python IDLE

File exchange:
LP, results

calls reads

Lingo

The semi-loosed coupled system. A python script is built in the IDLE environment, automatically calling Lingo. The exchange of information is carried out through text files.

Growth Scenarios

- We consider four time periods t_1, t_2, t_3 and t_4
 1. In base year t_1, we simulate population $\sim U(5, 100)$
 2. Population growth is not uniform
 - $\sum_{i,m=1} a_{im} = 3780$,
 - $\sum_{i,m=2} a_{im} = 5670$,
 - $\sum_{i,m=3} a_{im} = 8503$,
 - $\sum_{i,m=4} a_{im} = 12758$.
Growth Scenarios

- We consider four time periods t_1, t_2, t_3 and t_4

 1. In base year t_1, we simulate population $\sim U(5, 100)$
 2. Population growth is not uniform

\[
\begin{align*}
\sum_{i,m=1} a_{im} &= 3780, \\
\sum_{i,m=2} a_{im} &= 5670, \\
\sum_{i,m=3} a_{im} &= 8503, \\
\sum_{i,m=4} a_{im} &= 12758.
\end{align*}
\]
Calibration of cost parameters

\(c_{jm} \): $710,000.
\(c_{sm} \): $7,200.
\(c_{Njm} \): $3,000,000 for a school of 60 acres.
\(c^{++} \): $10,000 per year (leasing), which includes rent, heating, maintenance.
\(z^{++} \): 25 students per unit.

\(c_{Ejm} \): $1: this cost can be negative, that is there is a benefit to close a school. In this paper, we take a symbolic cost of one unit.
\(K_{jm} \): upper-limit of 100 units.
\(\bar{E} \): 32 years.
Growth Scenarios

<table>
<thead>
<tr>
<th>time 1</th>
<th>time 2</th>
<th>time 3</th>
<th>time 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>monocentric direct</td>
<td>monocentric inverse</td>
<td>monocentric inverse</td>
<td>uniform</td>
</tr>
</tbody>
</table>

Delmelle and Thill, Peeters and Thomas
Growth Scenarios

- **Polycentric Direct**
 - Time 1
 - Time 2
 - Time 3
 - Time 4

- **Polycentric Inverse**
 - Time 1
 - Time 2
 - Time 3
 - Time 4

- **Demand Node**
- **City Center**

- **Proximity Buffer**
 - 10, 20, 30 km

- **Demand**
 - 52, 90, 130, 200

- **Scale**
 - 0, 25, 50 km

Delmelle and Thill, Peeters and Thomas

Dynamic School Location

October 14, 2011

Page 17 of 25
Time period weights

\[F_1 = \left[\sum_{i \in I} \sum_{m \in M} \left(\sum_{j \in J} w_m \cdot c_{ijm} \cdot a_{im} \cdot X_{ijm} \right) \right] \]

\[w_m = \frac{f}{(1 + g)^m}; \quad \sum_{m \in M} w_m = 1 \tag{1} \]

<table>
<thead>
<tr>
<th></th>
<th>case a</th>
<th>case b</th>
<th>case c</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>.25</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>.9275593</td>
<td>1.97444</td>
</tr>
<tr>
<td>(w_1)</td>
<td>.25</td>
<td>.5187904</td>
<td>.6723942</td>
</tr>
<tr>
<td>(w_2)</td>
<td>.25</td>
<td>.2691342</td>
<td>.2260564</td>
</tr>
<tr>
<td>(w_3)</td>
<td>.25</td>
<td>.1396286</td>
<td>.07599902</td>
</tr>
<tr>
<td>(w_4)</td>
<td>.25</td>
<td>.0724378</td>
<td>.02555034</td>
</tr>
</tbody>
</table>
Initial assignment

(a) location, ID and age of facilities

(b) capacitated p-median solution (t1)

- demand
- facilities: open
- closed

allocation: 1

capacity usage: 1

Delmelle and Thill, Peeters and Thomas
Dynamic School Location
October 14 2011
Solution from different growth scenarios

(time 1) (time 2) (time 3) (time 4)

direct monocentric

inverse monocentric

direct polycentric

inverse polycentric
Impact of β: putting extra-pressure beyond t_{im}^{max}
Impact of weights

\[\text{time 1} \hspace{2cm} \text{time 2} \hspace{2cm} \text{time 3} \hspace{2cm} \text{time 4} \]

- \(\gamma_1 = 0.5, \beta = 2.5 \)
- \(\gamma_1 = 0.9, \beta = 0 \)
Minimal age for school closure

- No age limit
- 32 years age limit
- 60 years age limit

Time 1, Time 2, Time 3, Time 4
This paper presents a multi-period location problem

• Capacity, **age** constraints and **modular** equipment.
• Model is flexible (time-varying weights for uncertainty)

Generate small instances for different growth scenarios

• Heuristics are necessary for larger problems

Other modeling concerns . . .

• Quantifying transportation costs (environmental impact of modal choice) and travel time
• Leasing modular equipments → long-term solution?
• Splitting the demand (and disruption to the student)
1. This paper presents a multi-period location problem
 - Capacity, age constraints and modular equipment.
 - Model is flexible (time-varying weights for uncertainty)
2. Generate small instances for different growth scenarios
 - Heuristics are necessary for larger problems
3. Other modeling concerns . . .
 - Quantifying transportation costs (environmental impact of modal choice) and travel time
 - Leasing modular equipments → long-term solution?
 - Splitting the demand (and disruption to the student)
Discussion

1. This paper presents a multi-period location problem
 - Capacity, age constraints and modular equipment.
 - Model is flexible (time-varying weights for uncertainty)

2. Generate small instances for different growth scenarios
 - Heuristics are necessary for larger problems

3. Other modeling concerns . . .
 - Quantifying transportation costs (environmental impact of modal choice) and travel time
 - Leasing modular equipments \rightarrow long-term solution?
 - Splitting the demand (and disruption to the student)
questions ... comments ... concerns ... suggestions
eric.delmelle@uncc.edu